Меню
Бесплатно
Главная  /  Первая медицинская помощь  /  Искусственно выращенный бриллиант. Химический способ получения искусственных алмазов. Производство ювелирных синтетических алмазов

Искусственно выращенный бриллиант. Химический способ получения искусственных алмазов. Производство ювелирных синтетических алмазов

Приветствуем, дорогие наши! У всех на слуху известная фраза «Лучшие друзья девушек – это бриллианты». Это не просто побрякушки-однодневки, а самое долговечное вложение, оно же, по совместительству, и фешенебельное украшение. Ценой ему порой целое состояние, на которое копить долго, а ждать в подарок от случайного богатого поклонника и вовсе глупо. Но есть отличная альтернатива – искусственный бриллиант, который внешне от настоящего не отличается, а стоит в разы дешевле.

Сегодня вы узнаете не только о видах и способах получения этого камня в искусственно созданных условиях, но и попробуете изготовить его сами дома…в микроволновке!

Всех интересует, как называется в ювелирном мире камень, созданный не природой, а человеческими руками. «Очевидно же – подделка», — скажете вы и ошибётесь. Дело в том, что нужно отличать кустарное производство фальшивок и высокотехнологичный процесс, поэтапно повторяющий появление драгоценного самоцвета. Для этого используется дорогое оборудование и качественное сырье. Как результат – идеальный бриллиант, который даже опытный специалист не отличит от природного.

Общие черты натурального и синтетического алмаза

Потоковое производство этих камней двояко отразилось на камнедобывающей промышленности. С одной стороны, «брат-близнец» настоящего бриллианта решил проблему дефицита натуральных камней. С другой – у нечистых на руку продавцов появилась возможность выдавать «искусственники» за настоящий камень и зарабатывать на этом огромные деньги.

О том, как отличить искусство природы от мастерства современной алмазной промышленности, узнаем чуть позже, ну а пока об общих чертах бриллиантов искусственных и натуральных.

Они почти идентичны по:

  • Физическим свойствам, атомной структуре, химическому составу;
  • Прозрачности, степени теплопроводности, чистоте кристаллической решётки;
  • Исходному сырью для изготовления (кристаллизованный чистый углерод);
  • Внешнему виду.


Если вам подарят кольцо с «брюликом» и будут уверять, что это ни что иное, как «золото-брильянты», вы ни за что не заподозрите обмана. Даже опытный ювелир под лупой порой не разглядит следов искусственного происхождения камушка, особенно если он белый, ведь прозрачный искусственный бриллиант без примесей других цветов от натурального не отличить.

Многогранная палитра синтетических алмазов

Полностью прозрачный алмаз считается самым редким и дорогостоящим. Хотя камни с оттенками тоже пользуются спросом и притягивают взгляд своей завораживающей красотой.

Сегодня в мире производят несколько видов цветных искусственных бриллиантов:

  • Голубые (от бледного до насыщенного небесного оттенка, который получают при помощи добавления в состав бора; достигают 1,25 карата);
  • Желтые (от светло-лимонного до насыщенного ярко-желтого и даже оранжевого; эту палитру формирует азот; такие бриллианты могут достигать 2 каратов и выращивать их намного проще, нежели голубые);
  • Розовые, красные, сиреневые, зеленые (в зависимости от добавления в процессе обработки разных примесей, можно получить алмазы самых невероятных оттенков).


Немного истории про искусственные бриллианты

Первые «фальшивки», заменители натуральных бриллиантов, были зафиксированы еще в 1920 году.

Чарльз Парсонс изобрел прототип нынешнего синтетического кристалла. Он был настолько великолепно исполнен, что попал в колье знаменитой Сибиллы Шепард. Украшение впоследствии стало одним из реликвий Британской империи. Интересно, что повторить тот самый первый «фальшивый» алмаз пока больше не удалось никому, хотя сам автор был не слишком доволен своим творением.

Перед Второй мировой войной две компании из США решились на массовое производство бриллиантов. В лабораторных условиях они провели первый эксперимент с использованием углерода. На исходный материал воздействовали давлением и высокими температурами. Пыл изобретателей утих на время войны, хотя многие исследователи уверены: алмазы нужны были именно для военных нужд, а затем надобность в них отпала.

Известен своими бриллиантами и QUINTUS, проект шведских бизнесменов. Именно ему принадлежит огромная партия камней. Использовали их в основном в промышленности, так как для создания украшений они были не слишком красивы, даже грубоваты, и до ювелирной эстетики не дотягивали.

Первый драгоценный алмаз был создан в Токио в 1997 году. Он был дымчатым, с переливами и характерным для настоящего камня желтоватым оттенком. Сегодня у Японии в руках около 8% всего мирового производства бриллиантов. «Монстрами» в сфере синтеза камней по праву считаются США и Китай.


Теперь же это поставленное на поток производство, позволяющее любителям драгоценностей сверкать шикарными украшениями. Выращенные в «инкубаторских» условиях камушки вставляют в кулоны, перстни, декорируют ими одежду и обувь. При этом стоимость их не так сильно ударяет по бюджету.

Владельцы крупных ювелирных сетей не очень разделяют восторг по поводу массового заполонения рынка «фальшивками». Предполагается, что они потеряют более 15% прибыли от продажи природных камней.

Если вы привередливы и желаете иметь именно настоящие бриллианты, готовы платить за их природное происхождение, советуем знать «в лицо» все их синтетические заменители.

Двойники алмаза и как отличить от природного «ненастоящий» камень

Один из самых распространенных в наше время фальшивых алмазов – это фианит. Впервые он был получен в 1976 году и представляет собой диоксид циркония. Переливаются фианиты точь-в-точь, как настоящие бриллианты, и в современной ювелирной промышленности используются повсеместно. Обычно продавцы указывают название камушка на ценнике, но недобросовестные торговцы могут выдать его за драгоценный. Как отличить фианиты от природного алмаза? Очень просто: нужно взвесить два одинаковых камня (натуральный и заменитель). Настоящий будет весить больше за счет большей плотности, тогда как фианит окажется более легким.


Считается, что последний можно вычислить и с помощью ультрафиолетового излучения. При его воздействии фианит обретает зелено-желтый оттенок.

Муассанит – это более дорогостоящий аналог алмаза. Отличить их практически невозможно. Научное название муассанита – карбид кремния, который на современном оборудовании преображается в великолепный сияющий самоцвет.

Первооткрыватель этого камня – Генри Муассан, был удостоен Нобелевской премии. Он первым нашел в кратере вулкана фрагменты метеорита, которые впоследствии стали сырьем для алмазного производства.

Как же распознать этого «двойника» и не обмануться при покупке? Натуральный бриллиант, как ни странно, не идеален внешне. Его поверхность чуть шероховата, в отличие от гладкой оболочки муассанита. Если присмотреться, то можно обнаружить чёрный отблеск фрагментов алмаза, тогда как в синтетическом камне никаких чужеродных включений нет.

Среди прочих заменителей бриллианта сегодня в ходу циркон, белый сапфир и топаз, гранат алюмоиттриевый.

Ну и нельзя не сказать о всем известных «стекляшках» или стразах. Ранее их делали из натурального горного хрусталя, а теперь из простого стекла и полимеров. Еще в 18 веке Георг Фридрих Страсс придумал наносить металлическую пудру на нижнюю сторону хрусталя, чем достигался зеркальный алмазный эффект. Настоящие стразы сегодня отнюдь не считаются дурным тоном. Чего стоят знаменитые изделия от Сваровски, которые стремятся заполучить в свою коллекцию все известные красавицы мира!


Не стоит недооценивать все виды заменителей, они имеют свою ценность в ювелирном мире. К тому же их производство – очень трудоемкий процесс, который позволяет получить на выходе великолепные экземпляры, не уступающие натуральным камушкам в эстетических качествах.

Жар, газ и давление

Давайте чуть углубимся в сам технический процесс, а затем узнаем, как получить бриллиант в домашних условиях. Освоим, так сказать, профессию технологов-ювелиров, чтобы понять, насколько это сложная и кропотливая работа.

Сегодня выделяют два способа производства алмаза в условиях лаборатории.

  1. В специальную капсулу помещают алмазную пудру, которая растворяется под действием давления и высоких температур. Затем происходит процесс кристаллизации, который занимает до нескольких месяцев. Как результат – алмазы с кубическими гранями, отличные от настоящих не только по форме, но и по самому процессу роста.
  2. Второй способ предполагает также наличие камеры, заполненной газом. При воздействии потоков энергии молекулы газа в вакууме разрушаются, а атомы углерода оседают внутри капсулы в виде пластин. В достаточно большой камере за несколько недель можно вырастить десятки алмазов. Они будут слоистыми, с шероховатыми чёрными краями. Иногда камни при этом методе получаются с коричневым оттенком, но все примеси хорошо очищаются в процессе термической обработки. Затем мастера приступают к огранке.


Растим бриллиант дома

Как видите, процесс очень интересный, хорошие мастера зарабатывают в алмазной промышленности баснословные суммы. Готовы попробовать себя в этой профессии? Тогда приступаем к нашему эксперименту.

Нам понадобится:

  • Микроволновая печь;
  • 3 стержня простого карандаша (графита), около 3 мм толщиной;
  • 15 см х/б нитки;
  • 2 кружки;
  • Оливковое масло.

А теперь само действо:

  • В небольшое блюдечко накапайте немного оливкового масла, по периметру его положите нитку, чтобы она адсорбировала излишки.
  • Теперь нитку чуть приподнимите и завяжите в слабый узелок. В него пропустим графитовый стержень. Его можно положить на 2 зубочистки, чтобы он был чуть выше поверхности масла. Можно аккуратно потянуть за оба конца нити, завязав плотный узелок. Оставьте всю эту конструкцию на полчаса.
  • Микроволновку хорошенько вымойте и высушите, там не должно быть остатков еды или пыли.
  • Переверните кружку и установите ее в микроволновую печь. На нее положите два оставшихся стержня, а поперек них – подготовленный масляный. Накройте сверху второй кружкой. Включите печку на максимальную температуру и время.
  • В финале нетронутыми останутся непромасленные стержни, а участок, который был пропитан, расплавится и на его месте образуется бриллиант. Трогать руками конструкцию сразу нельзя, иначе рискуете заполучить ожог.

Можете любоваться собственным творением, и пусть это создание напоминает не совсем драгоценность, а скорее, поделку из набора «юный химик», зато вы познали азы «камнеобработки» и «алмазодобычи».

Как правильно выбирать

В деле покупки драгоценностей каждого из нас едва ли можно назвать экспертом, поэтому лучше если вы будете приобретать украшения в проверенных ювелирных магазинах известных торговых сетей.

Согласитесь, купить вместе алмаза его подделку из стекла не слишком приятно. Считается, что все настоящие бриллианты имеют специальную маркировку. К тому же они весят больше синтетических и имеют иную кристаллическую решетку. Фальшивки порой более безупречны внешне, без примесей и с идеально гладкой поверхностью, они могут реагировать на сильные магниты, поэтому на всякий случай перед покупкой проведите эксперимент прямо в магазине. Если же хотите быть уверенным на все 100%, отнесите камень на исследование к геммологу, специалисту по алмазам. Он наверняка сможет определить, искусственник перед вами или нет.


Впрочем, носить неприродные камни сейчас вовсе не постыдно, тем более если ваш бюджет не позволяет покупать шикарные настоящие бриллианты. Ожерелье или серьги с фианитами или стразами будут блистать даже ярче натуральных собратьев, а обойдутся в разы дешевле, чем изделия с алмазом.

Итак, сегодня мы с вами ознакомились с тем, что такое заменители бриллиантов и «с чем их едят», вернее, как они зародились, каким способом производятся. Научились самостоятельно добывать бриллиант из простого карандаша и можем с полным правом считать себя специалистами в этой теме.

Команда ЛюбиКамни

С тех самых пор, как человек оценил удивительные свойства природных минералов, одни из них стали предметами роскоши, другие заняли место в быту и ритуалах. Востребованность драгоценных природных камней при небольших объемах добывания из недр земли сделало их дорогостоящими. Поэтому вопрос создания искусственных заменителей, которые могли бы удовлетворить спрос, активно разрабатывался уже в предыдущие столетия. Мощным двигателем развития в этом направлении стало и желание мошенников продать под видом дорогих камней дешевые подделки.

Истоки желания человека созидать камни, равноценные сотворенным природными силами, найдены в алхимии. В IV веке до н. э. алхимики искали магические формулы для изготовление искусственных драгоценных камней. А вот, к примеру, искусственный жемчуг был найден среди давних археологических находок китайской цивилизации. Реальные научные результаты были получены в середине XIX века. Марк Годэн, химик из Франции, в 1857 году явил миру первый неприродным путем созданный камень - рубин. Следующим появился искусственный изумруд. Затем изготовление камней для ювелирных дел стало развиваться успешнее, и уже в XX веке оно было налажено в полноценном производственном масштабе.

Так человеку открылась еще одна тайна природы - он сумел своими средствами создавать искусственные минералы. По своему составу искусственные заменители природных камней приближаются к натуральным на 100%. Отличить природный от искусственного неспециалисту практически невозможно. Да и профессионального взгляда в отдельных случаях может быть мало без лабораторного спектрального анализа.

Заводя речь об отличиях природных и искусственных камней, отметим, что у последних структура ближе к идеальной. В природных часто встречаются разные вкрапления, большие или меньшие трещинки на поверхности. Это - нормальное их свойство, но может служить лишь относительным признаком природного происхождения. Такие дефекты могут присутствовать и в искусственных самоцветах. Кроме того помутневшие участки и круглые пузырьки воздуха присущи только искусственным камням.

Появление большого количества искусственных камней на ювелирном рынке пошатнуло устоявшиеся цены. На некоторое время стало гораздо проще приобрести даже настоящие рубины, понизилась стоимость натуральных сапфиров и изумрудов. Однако очень скоро после этого ювелиры научились с помощью оптического оборудования выявлять искусственные камни. Так ситуация вновь урегулировалась.
На сегодняшний момент в лабораториях создаются практически все драгоценные камни. Кристаллы искусственных минералов широко используются в электронной и других отраслях промышленности. Изготовление искусственных камней сегодня может вестись тоннами. Однако так может быть пока что не со всеми минералами. С алмазами науке пришлось потрудиться больше всего.

История создания искусственного алмаза

Исаак Ньютон предположил, что алмаз, даже при том, что является наиболее твердым минералом на планете, подвергается горению. Поскольку было известно, что алмаз создается после сложных превращений из привычного для нас графита, то была выдвинута гипотеза о возможности обратного процесса. Экспериментальными исследованиями данной гипотезы занялась Флорентийская академия наук. Так было выяснено, что при 1100 градусах по Цельсию алмаз сначала превращается в графит, а затем сгорает.

В 30-х годах XX века Овсей Лейпунский в результате собственных исследований и сложных расчетов выяснил условия, при которых можно вырастить искусственный алмаз. Так, давление должно составлять более 4,5 ГПа, а температура - 1227 градусов по Цельсию. При этом процесс должен происходить в сложной среде - расплавленном металле. Только через два десятка лет попытка создания искусственного алмаза увенчалась успехом. Но первые алмазы были пригодны лишь для технических целей. Создание искусственных алмазов требует серьезных технических средств, что делает процесс дорогостоящим. Выяснено, что искусственный и натуральный алмазы имеют отличия в приписываемых магических свойствах.

Искусственные алмазы ближе к группе кварцевых минералов, если рядом положить натуральный и искусственный алмаз, то последний поблекнет. Магические свойства искусственных минералов значительно слабее, поэтому «знакомить» натуральный камень с искусственным следует осторожно. Только через несколько суток обмена информацией на расстоянии через перегородку (из бумаги, например) камни смогут «ужиться» вместе.

Искусственные изумруды

Еще одно недешевое удовольствие - искусственные изумруды. Сегодня для их создания используется дорогостоящий гидротермальный метод. Довольно долго изумруды производились только в лаборатории Керола Четмена в Сан-Франциско. Сегодня уже несколько компаний в мире пользуются таким методом и создают искусственные изумруды.

Хрупкость искусственных камней такая же, как и у природных. Однако в их структуре нет (или практически нет) трещинок и прочих дефектов, присущих природным камням, поэтому созданные лабораторным путем изумруды долговечнее.

Технология создания искусственного изумруда совершенствуется, однако остается очень дорогостоящей. Поэтому гидротермальные камни только немного дешевле природных. Также они устойчивы к воздействию кислот, нагреванию, ультрафиолетовому воздействию. Цвет искусственных изумрудов идентичен натуральному.

Культивированный жемчуг - древняя технология

Китайцы хранили секрет создания искусственных жемчугов очень долго. Но в 1890 году древняя технология таки стала известна японцам, которые поставили изготовление жемчуга на промышленное производство.
Древняя технология выращивания жемчуга предполагает долгий процесс нарастания перламутра вокруг небольшого зернышка перламутра, вручную помещенного сначала в кусочек жировой ткани одного моллюска, а затем в мантию другого. Процесс выращиванию жемчуга таким способом кропотлив, поэтому технологии совершенствовались и упрощались процессы. Именно так появилось понятие культивации жемчуга.
Наименьший размер культивированной жемчужины - как булавочная головка, а наибольший - с голубиное яйцо. Форма имеет особое значение: высоко ценится круглая, максимально приближенна к идеалу. Также жемчуг может иметь каплевидную форму и напоминающую пуговицу. Стоимость культивированного жемчуга, а, следовательно, и изделий из него, меньшая, нежели у природного, что делает его более доступным в ценовом плане.

Что касается всех искусственных драгоценных камней, то нужно помнить: это - не подделки, а попытка человека заменить ограниченные труднодобываемые природные ресурсы творениями науки. Поэтому искусственные камни занимают отдельное и, несомненно, достойное место в ювелирном мире.

Сегодня человечество научилось создавать несколько разновидностей искусственных бриллиантов, наилучшим из них по праву считается муассанит. Ценность алмаза и получаемого после его огранки бриллианта с давних пор подталкивала людей на поиск и изготовление достойного ему аналога. Так как природа одарила алмаз множеством характеристик, на протяжении нескольких сотен лет эта задача была непосильна, а все попытки замены выглядели лишь жалкими подделками.

Как и из чего получают искусственные бриллианты

Главная проблема при создании алмазов - длительность и сложность процесса. В природных условиях камень образуется тысячи лет под колоссальным давлением от 45000 до 60000 атмосфер и при температуре свыше 900 градусов, поэтому повторить весь процесс в точности с природным практически невозможно.

Первое документальное описание попытки синтезировать бриллианты датируется 1823 годом, когда наш соотечественник Василий Каразин в результате опытов с нагреванием и перегонкой сухой древесины получил неизвестные кристаллы.

Однако официально считается, что впервые камень, с наиболее похожими на бриллианты свойствами, открыл французский исследователь и нобелевский лауреат Анри Муассан. В 1905 году полученный им кристалл карбида кремния, в честь создателя, начал именоваться муассанит. Карбид кремния встречается в природе и за свое космическое происхождение часто именуется звездной пылью, но его естественный размер очень мал и имеет специфическую окраску.

Не оставляя желание создать идеальные бриллианты в лабораторных условиях ученые научились синтезировать более крупные и чистые камни. Искусственно выращенный муассанит нередко называется карбокорунд.

Большой вклад в создание искусственных бриллиантов внесли российские и советские ученые. Основную массу синтетических камней производят по разработанным ими технологиям. Сегодня муассанит получают нескольким способами, однако наиболее чистые и качественные кристаллы карбокорунда рождаются путем многочасового нагревания при температуре 2 400 ºС кристаллического карбида кремния с участием металлического катализатора (железа).

В промышленных масштабах искусственные алмазы, имеющие крупнозернистую структуру, начали производить с середины прошлого века.

Кроме описанного выше термобарического метода, при их создании используется способ осаждения кристаллов из плазмы газообразного углерода под воздействием электрической дуги и редкая детонационная технология, использующая энергию взрывной волны.

Для выращивания бриллиантов в лабораторных условиях используют вещества с высокой концентрацией углерода: очищенную сажу или уголь, графит и т.д. В зависимости от того каким образом был получены такие бриллианты, существует деление на НРНТ-и CVD-алмазы.

Сфера применения и ценность

В большинстве случаев бриллианты, полученные синтетическим путем, автоматически воспринимаются, как подделки и вызывают негативную реакцию. Такое отношение абсолютно неоправданно, так как искусственное выращивание в лабораторных условиях кристаллов имеющих физические характеристики алмазов несет неоценимый вклад в промышленность, развитие высоких технологий и ювелирное дело.

50% используемых в мире бриллиантов имеют синтетическое происхождение и созданы человеком. При этом искусственные алмазы полностью удовлетворяют нужды промышленности, где их доля составляет более 90 % от общего объема используемых камней. Применение алмазов человеком обусловлено их уникальными свойствами:

  • исключительная твердость кристаллов применяется для шлифовки, резки различных материалов и бурения породы;
  • благодаря долговечности алмазы незаменимы при производстве высокотехнологичного оборудования, компьютерных чипов и микросхем;
  • необработанные бриллианты активно используются в работе лазеров и медицинском оборудовании;
  • муассанит наивысшего качества и чистоты активно применяется в ювелирном деле.

Цена на искусственно выращенные алмазы варьируется в зависимости от вида и качества камня.

Один из самых дешевых вариантов - фианит, средняя цена за карат у которого начинается с нескольких долларов.

Для сравнения, чек на искусственное творение такого же размера может быть в десятки раз больше. Так, бесцветный муассанит будет не намного дешевле природного бриллианта, а в ряде случаев может быть дороже чем прототип.

Одним из главных критериев для определения цены, так же как и у натуральных алмазов, служит цвет. Чем труднее получить тот или иной оттенок, тем дороже будет конечная стоимость. Из-за применения железосодержащих катализаторов муассанит приобретает желтоватый оттенок. Добиться идеальной прозрачности довольно сложно, поэтому камни чистой воды стоят дороже, чем бриллианты цвета шампанского.

Отличие от природного камня

Муассанит считается самым совершенным аналогом бриллианта, который по своим характеристикам не только повторяет, но и превосходит природный прототип и имеет лишь небольшие отклонения, позволяющие отличить его от натурального алмаза. Одно из главных отличий, по которому можно узнать муассанит, кроется в его внешних характеристиках.

Всем известно, что ценность бриллианта кроется не только в его редкости и твердости, но и в высоком коэффициенте преломления света равном 2,418. Показатель преломления которым обладает муассанит выше на 25 %. Поэтому лабораторный камень с правильной огранкой сверкает в лучах света гораздо ярче. Ограненный алмаз из земных недр также проигрывает выращенному человеком бриллианту в дисперсии, и искрит в десятки раз меньше.

Долгое время не удавалось получить муассанит идеально прозрачного цвета и хотя в сравнении с бриллиантом он не имеет посторонних вкраплений, цвет его всегда отличался желтизной. Несколько лет назад эта проблема была решена и теперь в соревновании чистоты естественные алмазы также проигрывают.

Строение карбокорунда очень близко к бриллиантам, поэтому далеко не каждый прибор может выявить различия между этими близнецами.

Даже опытные ювелиры и специалисты с большим стажем, для того чтобы уверенно говорить о бриллианте как о природном, проверяют камни сразу по нескольким показателям, среди которых: твердость, удельная масса, определение коэффициента отражения, анализ электропроводности и разнообразные оптические тесты.

Чаще всего разницу можно заметить визуальным сравнением двух камней с одинаковой каратностью. Обычно муассанит выгодно отличается и выглядит более искристым и блестящим. Но и этот факт не всегда позволяет определить со 100% точностью, где природные бриллианты, а где нет.

Использование высокотехнологичных бриллиантов в ювелирном деле

Несмотря на то, что муассанит появился совсем недавно, он уже имеет популярность не только как аналог бриллиантов, но и как вполне самостоятельный камень с отличными ювелирными характеристиками, которые встречаются только в алмазах наивысшей пробы. Развитие технологий ведет к тому, что вскоре человек научится контролировать появление цветных алмазов высокотехнологичным путем, что повлечет рождение новой эпохи в ювелирном искусстве. А возможность замены природного камня искусственными бриллиантами рано или поздно снизит рыночную стоимость украшений и сделает их более доступными.

Уже сейчас по своим эстетическим характеристикам лабораторный алмаз не имеет себе равных и не выглядит как имитация.

Ограненный муассанит заслуживает оправы из самых дорогих драгоценным металлов, так как искрится и переливается не хуже бриллиантов. Особенного оптического эффекта сияния и глубины удается добиться в оправе из белого золота, платины и серебра. Искусно ограненный муассанит выглядит благородно в кольцах, колье, браслетах, серьгах и во многих других украшениях. Его роскошный блеск, по сравнению с «более вечерними» бриллиантами, раскрывается в любое время суток.

Прекрасным ювелирным изделиям с такими искусственными бриллиантами, как муассанит покорились практически все города мира, в том числе и Москва. Разнообразие украшений настолько велико, что удовлетворяет вкусам самых взыскательных покупателей.

Алмаз, так же как и графит, по своему химическому составу пред­ставляет собой чистый углерод. Они являются полиморфными модифика­циями одного и того же элемента, однако свойства их резко различаются. Это объясняется различием их кристаллических решеток.

Алмаз был известен в далеком прошлом, широко применяется в на­стоящем, велики перспективы его использования в будущем. С развитием техники, когда возникла необходимость в новых видах минерального сы­рья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время су­ществование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовления тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порош­ки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что ос­новано прежде всего на их чрезвычайно высокой твердости. Б последние годы все больше привлекают внимание другие исключительные свойства алмаза: его.электрические свойства при использовании в качестве полупро­водников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать нако­пителем и хранителем обширной информации.

Плотность алмаза 3,513 г/см 3 , микротвердость 100,6 ГПа, модуль уп­ругости 825 ГПа, удельное электросопротивление 10 12 - 10 14 Ом-см. Кроме углерода в кристалле алмаза всегда присутствует некоторое количество примесей, составляющих не более десятых долей процента. Основные хи­мические элементы - примеси в алмазе: азот, кислород, водород, Fe, Ti, Mn, Si,Al.

Как известно, основные факторы, способствующие образованию ал­мазов - высокие давления и температура, которые имеют место в земных недрах на большой глубине.

Искусственные алмазы начали получать в целом ряде стран в сере­дине 50-х годов XX века. Внедрение синтетических алмазов избавило от необходимости дробить большую часть природных алмазов для изготовле­ния порошков, паст и абразивного инструмента. Выпускаются синтетиче­ские алмазы марок АСО, АСР, АСВ, АСК, АСС, САМ, АСБ и АСПК, а также микропорошки на основе синтетических алмазов АСМ и АСН разме­ром от 1 до 630 нм.

Применяются синтетические алмазы главным образом для изготов­ления различных видов абразивного, лезвийного и бурового инструмента. Важнейшими областями применения алмазных инструментов являются об­работка инструментов и деталей машин из металлокерамических твердых сплавов, бурение геологических и эксплуатационных скважин в твердых и абразивных породах, обработка изделий из гранита, мрамора и др. Наибо­лее широко порошкообразные синтетические алмазы применяются для из­готовления шлифовальных кругов, предназначенных для доводки и заточки твердосплавного металлорежущего инструмента.

В настоящее время известны три метода синтеза алмазов:

в области термодинамической стабильности алмаза воздействи­ем на исходный углеродсодержащий материал высоким статическим давле­нием и температурой в.течение времени, измеряемого по крайней мере не­сколькими секундами; .

в области термодинамической стабильности алмаза воздействи­ем на исходный углеродсодержащий материал высоким динамическим дав­лением и температурой в течение времени, измеряемого микросекундами и долями микросекунд;

в области термодинамической стабильности графита, осущест­вляемой при атмосферном и меньшем давлениях и высокой температуре эпитаксиальным наращиванием алмаза на затравках.

Основная масса синтетических алмазов производится во всем мире по первому методу, т.е. при высоких статических давлениях. Отрицатель­ной чертой второго метода является кратковременность действия высоких давлений и температур, из-за чего зародившиеся кристаллы новой фазы лишены возможности длительного роста и образуют поэтому весьма мелкие частицы.

Третий метод получения алмазов требует очень точного соблюдения условий проведения процесса. В противном случае на поверхности затра­вочных кристаллов будет образовываться как алмаз, так и графит, а затем графит покроет всю поверхность, и рост алмазной фазы прекратится.

Рациональное сочетание трех условий, необходимых для синтеза ал­мазов (температуры, давления и наличия определенной среды) лежит в ос­нове методов производства синтетических алмазов при высоких статиче­ских давлениях, используемых во многих странах мира.

Многочисленные исследования отечественных и зарубежных уче­ных в области синтеза алмазов позволили предложить механизм превраще­ния графита в алмаз, который подробно описывается в различных литера­турных источниках и объясняется перестройкой связи электронной конфи­гурации sp в sp 3 .

Как уже было сказано выше, для синтеза алмазов используются уг-леродсодержащие материалы: стеклоуглерод, кокс, синтетические смолы и, конечно, графит. Однако следует знать, что при синтезе алмазов исходное сырье обязательно проходит стадию графитации. Углеродсодержащее ве­щество до термообработки должно быть максимально однородным по хи­мическому составу. Кроме того, распределение областей когерентного рас­сеяния (ОКР) по размерам должно быть достаточно узким.

Нецелесообразно использовать в качестве исходного углеродсодер-жащего вещества сажу, так как она очень мелкодисперсна. Это затрудняет набивку камер аппаратов высокого давления.

На практике в технологии синтеза алмазов используются определен­ные марки графита МПГ-6, ГМ-ОЗОСЧ, МГ-ОСЧ и т.д. В этом случае обра­зуются алмазы с высоким выходом и хорошего качества. Качество синтези­рованных алмазов определяется их размерами и твердостью.

Поскольку синтез алмазов протекает при высоких давлениях и тем­пературах, то необходимо иметь надежные аппараты для твердофазного синтеза, в которых достаточно длительное время можно поддерживать и высокие давления, и температуры. Нужно уметь измерять такие давления и температуры, определять степень их однородности в реакционной зоне.

Синтез алмазов проводится в специальных камерах, изготовленных из высокопрочных материалов. Такими материалами являются твердые сплавы на основе карбида вольфрама и кобальта. Подъем температуры в подобных аппаратах осуществляется пропусканием электрического тока через нагревательное устройство.

Конструкции камер высокого давления, где создаются температуры от 727°С до 2227°С весьма различны. Среди множества аппаратов такого рода рассмотрим кратко три вида наиболее распространенных конструкций: многопуансонный аппарат, аппарат типа «цилиндр - поршень» и аппарат типа «наковальня с лункой».

Представителем первого вида является тетраэдрическая установка схема которой представлена на рис. 1.14. Камера состоит из четырех пуан­сонов с усеченными трехгранными концами. Торцы этих пуансонов имею: вид равносторонних треугольников и ограничивают тетраэдрический объ

Рис. 1.14. Схема тетраэдрического аппарата высокого давления; а -- схема расположения 4 пуансонов; б - установка в

Сборе, верхний пуансон удален

С помощью четырех гидравлических прессов, симметрично распс ложенных в пространстве, пуансоны двигаются вдоль своей оси, образу рабочий -объем. В него помещается контейнер из рабочего вещества, вь: полненный в виде тетраэдра.

Рабочее вещество - это вещество, посредством которого передаете давление во всех установках, где проводятся высокотемпературные иссж давания при высоких давлениях. Оно должно быть твердым телом с мало сжимаемостью и удовлетворять следующим условиям:

иметь высокую температуру плавления и малую теплопровод ность;

не проводить электрический ток; быть химически инертным;

быть достаточно пластичным, чтобы с его помощью можно бь ло получать более или менее равномерное (квазигидростатическое) давл(ние в определенном объеме.

Нагреватель (чаще всего графитовая трубка) заполняется реакцию] ной шихтой и вкладывается в тетраэдрический контейнер так, чтобы конц нагревателя выходили из противоположных ребер тетраэдра. При сближ-нии пуансонов они сжимают тетраэдрический контейнер. Часть рабоче) вещества вытекает в зазоры между пуансонами, образуя уплотняющие пр< кладки. Электрический ток для создания нужной температуры подводится нагревателю через пуансоны, соприкасающиеся с нагревательным устрой­ством.

В настоящее время для изготовления контейнеров, работающих при высоких давлениях и температурах (10 ГПа и 2700°С), применяют в основ­ном четыре вещества: тальк или стеатит 3MgO-4SiOrH 2 O, пирофиллит Al 2 O 3 -4Si0 2 -H 2 O, литографский камень 95% СаСОз + 5% смеси 8Ю 2 , А1 2 0 3 , Fe 2 0 3 и катлинит - красную кремнистую сцементированную глину, место­рождения которой находятся в США. Они несколько различаются между собой по механическим свойствам и по термоустойчивости.

Контейнеры могут изготовляться как из блоков соответствующих минералов, так и прессованием порошков из этих минералов с употребле­нием различных связок (жидкое стекло, бакелит и др.).

Описанная тетраэдрическая камера требует приложения к ней уси­лия прессового устройства по четырем осям, что вызывает немалые трудно­сти, поэтому создают камеры, где сжатие осуществляется одним поршнем от какого-либо прессового агрегата. Ввиду этого значительное распростра­нение получили аппараты типа «цилиндр - поршень», так называемые белт-аппараты (belt 1 - пояс). Схема аппарата показана на рис.1.15.

1.15. Схема аппарата типа белт: 1 - - пуансон, 2 - - кон­тейнер

Рис. 1.16. Схема камеры высокого давления с поддержи­вающими кольцами (на­ковальня с лункой): 1 -пуансон, 2 - - стальное кольцо, 3 - контейнер, 4 - образец, 5 - зазор

Основными частями его являются два конических пуансона (1) из твердого сплава, на которые в несколько слоев надеты стальные бандажи. Их торцы входят в полый цилиндр из твердого сплава, также упрочненный набором бандажей. Внутрь цилиндра помещается цилиндрический контей­нер из рабочего вещества (2), в котором находится нагреватель с реакцион­ной шихтой. Нагревателем является трубка из электропроводящего мате­риала, ось нагревателя совпадает с осью контейнера.

Вся установка помещается в гидравлический пресс. При сдвигании пуансонов рабочее вещество пластически деформируется, часть его затека­ет в зазоры между цилиндром и пуансоном и надежно запирает камеру сжа­тия. Благодаря образующимся прокладкам из рабочего вещества пуансоны оказываются электрически изолированными от цилиндра.

Нагрев осуществляется пропусканием электрического тока через на­греватель, соприкасающийся с пуансонами, к которым подсоединяются электроконтакты от источника тока.

В установке типа «белт» возможно получать давления около 20 ГПа и температуры порядка 2700°С и можно иметь большой реакционный объ­ем. Однако детали данной конструкции весьма сложны в изготовлении, и эксплуатация ее требует высокой квалификации персонала. Поэтому в СССР была разработана более простая конструкция типа «наковальни с лункой», которая получила широкое распространение не только в лабора­торных исследованиях, но и в промышленности.

На рис. 1.16 представлена схема описываемого аппарата в разрезе. Аппарат включает два одинаковых пуансона из твердого сплава (1), каждый из которых в торце имеет центральное углубление (лунку) в виде сегмента сферы, окруженное поверхностью, обработанной на конус. По боковой по­верхности каждый пуансон (1) скреплен стальным кольцом (3). Между тор­цевыми поверхностями пуансонов помещается контейнер (2), выполненный из соответствующего рабочего вещества. Образец (4) собирается вместе с нагревательным элементом и вставляется в полость контейнера. Цифрой (5) обозначен зазор между обработанными на конус, периферическими участ­ками поверхности пуансонов.

Высокие давление (до 7 ГПа) и температура (до 2200°С) получаются следующим образом.. Образец (углеродсодержащий материал) вместе с на­гревательным элементом (4) помещается в контейнер (2), который собран­ным устанавливается в камеру высокого давления, образованную обращен­ными друг к другу торцами пуансонов (1). Камера в сборе закладывается в гидравлический пресс. При сближении пуансонов периферическая часть контейнера (2) постепенно деформируется и заполняет зазор (5). Пластиче­ское течение материала контейнера (2) прекращается, когда при возраста­нии сжимающего усилия пресса достигается необходимая величина давле­ния в камере. Электрическая мощность, необходимая для нагревания образ­ца.(4). подается на, нагреватель через пуансоны (1), для чего один из пуан­сонов должен быть электрически изолирован от остальных частей аппара­туры.

В данном случае твердосплавная деталь имеет линзообразное углуб­ление и называется «наковальней с лункой» (НЛ), а контейнер напоминает формой чечевицу. Для создания более высоких давлений камера типа НЛ была изменена. На конусной поверхности пуансона были сделаны кольце­вые канавки в виде разрезанного по большому диаметру тора (рис. 1.17).

Это не влияет на принцип действия камер, но значительно повышает стой­кость твердосплавной детали к разрушению. В таких аппаратах можно дос­тичь давлений в 13 - 14 ГПа. Конструкция получила наименование «нако­вальня с лункой и тороидом (НЛТ)», а контейнер для нее - «тороид» (рис. 1.18).

Рис. 1.17. Схема камеры высокого ис 1.18. Осевой разрез контейнера давления типа тороид типа тороид

Важным обстоятельством, сильно влияющим на характер протека­ния синтеза алмазов в камерах высокого давления с твердой средой, являет­ся возникновение градиентов температуры и давления в реакционной зоне, что усложняет технологию процесса. Истинная величина температуры мо­жет быть определена непосредственно в камере синтеза термопарой. В диа­пазоне температур до 930°С применяются платино-платинородиевая и для более высоких температур - вольфрам-рениевая термопары.

Прямой синтез алмазов из углеродсодержащих веществ без добавки каких-либо способствующих образованию алмаза веществ (катализаторов, растворителей) протекает при очень высоких давлениях и температурах. При каталитическом синтезе удается снизить температуру и давление более чем в 2 раза (4,1 - 4,5 ГПа, 1150 - 1200°С), поэтому каталитический синтез алмазов сейчас является основным. Катализаторами являются: марганец, хром, тантал, а также сплавы, образованные этими элементами с металлами, которые каталитически неактивны для данного процесса. Кроме того, ката­лизаторами синтеза алмазов являются сплавы переходных элементов Ti, Zr, Hf, V, W, Mo, Nb с металлами Си, Ag, Аи. Превращение графита в алмаз происходит при хорошем контакте между ним и жидким (расплавленным) металлом.

Следует отметить, что в синтетических алмазах, получаемых с по­мощью катализаторов, всегда наблюдаются различные включения.

Нельзя не сказать о возможности получения алмаза из газовой фазы при низких давлениях, т.е. о так называемом эпитаксиальном синтезе веще­ства.

Наряду с получением алмаза в условиях, когда он является термоди­намически устойчивым веществом (при высоких давлениях), алмазы можнс синтезировать в области его неустойчивости, т.е. при относительно низких давлениях. Для этого проводят термическое разложение углеродсодержа-пщх газообразных веществ, например метана, ацетилена, оксида углерода и др. В реакционный сосуд предварительно вводят кристаллы алмаза. Если имеется грань кристалла алмаза, вблизи которой концентрация атомов уг­лерода в виде пара превышает соответствующую равновесную, то избыток атомов углерода будет осаждаться на этой грани, воспроизводя кристалли­ческую структуру алмазной решетки. Процесс этот очень медленный. Кро­ме того, рабочие условия благоприятствуют образованию на поверхности подложки графита, который нужно периодически удалять с нее. Удельная производительность таких установок невелика, и сам процесс пока не на­шел промышленного применения.

В области термодинамической устойчивости алмаза его можно по­лучать в виде алмазной пыли из углеродсодержащих веществ во взрывной волне. Этот вариант синтеза следует отнести к методу динамического по­гружения.

Люди всегда восхищались бриллиантом. Раньше его заменители вроде белого сапфира визуально опознавал даже неспециалист. Сегодня благодаря достижениям науки оригинал копируется на сто процентов. А по свойствам искусственно выращенный бриллиант лучше природного и дешевле.

Синтетические алмазы, или искусственные бриллианты, – это выращенные человеком кристаллы. Они создаются из того же углерода, что и натуральные, имеют аналогичную природным камням структуру, состав, физические свойства. Все отличает дисперсия, прочие характеристики зависят от способа создания.

Культивированные алмазы – это, как правило, камушки до 1 карата. Синтез более крупных экземпляров не окупается, хотя положение может измениться. Например, в России вырастили 10-каратный густо-синий алмаз. Он получен в условиях, имитирующих природные. У камушка изумрудная огранка, безупречные форма и блеск, а включения заметны лишь под десятикратным увеличением.

История

Что такое искусственный алмаз, первым поведал миру француз Анри Муассан в начале ХХ века. Он открыл максимально схожий камень, обнаружив осколки метеора в кратере. И стал Нобелевским лауреатом.

Ещё один популярный аналог, синтезированный советскими учёными в 1976 году, называется .

Выращивают на основе высокоуглеродистых веществ – графита, очищенной сажи, угля. Существует два основных способа, поэтому различают НРНТ- и CVD-кристаллы.

Первозданный минерал и сотворённый двойник одинаково невзрачны на вид, оба сверкают только после огранки.

Где востребованы синтетические алмазы

90% искусственных алмазов «забирают» наука и промышленность. Особо чистые экземпляры востребованы точным машиностроением и нанотехнологиями для создания инструментов повышенной прочности (шлифовальных кругов, свёрл, пил, скальпелей, ножей).

Самая узнаваемая сфера – индустрия красоты. Украшения с искусственными алмазами популярны, потому что роскошны и доступны по цене, не хлопотны в уходе.

Цвета искусственных алмазов

У натуральных бриллиантов разные цвета или оттенки. Базовая гамма созданных человеком камушков беднее – жёлтый, синий, бесцветный. Каждый привлекателен по-своему:

  1. Белый. Самые желанные, поскольку традиционно бриллиант ассоциируется с белым прозрачным фоном. Но их производство наиболее трудоёмкое. Растёт кристалл медленно, постоянно нужно следить, чтобы не попал азот (иначе оттенок получится желтоватым) или бор (синеватым). Популярны даже однокаратные блестящие малютки.
  2. Голубой. Гамма варьируется от небесного голубого до густого синего. Цвет создают примеси бора, вес достигает 1,25 карата.
  3. Жёлтый. Самый лёгкий в создании вид. Диапазон цвета – от насыщенного лимонного до изысканной желтоватости – создают примеси азота. Иногда получается оптимистичный пламенно-оранжевый. Вес алмазов достигает двух каратов.